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Abstract The resin transfer molding process for composites manufacturing consists of either of
two considerations, namely, the fluid flow analysis through a porous fiber preform where the
location of the flow front is of fundamental importance, and the combined flow/heat transfer/cure
analysis. In this paper, the continuous sensitivity formulations are developed for the process
modeling of composites manufactured by RTM to predict, analyze, and optimize the
manufacturing process. Attention is focused here on developments for isothermal flow
simulations, and various illustrative examples are presented for sensitivity analysis of practical
applications which help serve as a design tool in the process modeling stages.
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1. Introduction
In manufacturing processes there are many factors that affect the resulting
product. Many times, the job of an engineer is to find the best process by
weighing the various input factors and their effect on the outcome. In the recent
past the optimization method has changed from heuristic trial-and-error to
more rigorous computational methods employing the finite element method
(FEM). Trial-and-error is still used with the FEM, but only the computer time is
involved and costly trial runs and experiments can be eliminated. A more
stringent method for optimizing manufacturing processes which does not
require the level of intuition as trial-and-error is via sensitivity analysis. With
properly designed software the engineer can define the limits of input
parameters and through iteration and optimization an optimal solution is
computed.

For a parametrized state system, the so-called sensitivity analysis involves
taking the partial derivative of state variables with respect to the problem
parameters. In this regard, the sensitivity analysis serves as a useful design
tool. In general, sensitivity analysis is the study of how sensitive the outcome of
process is to variations of given input parameters. Such analysis of sensitivity
can be conducted as a parametric study or through the so-called continuous
sensitivity equation (CSE) as described in this paper. Various applications of
sensitivity analysis are available in the literature and are typical of metal
forming, heat transfer, structural optimization, shape design, and the like
(Blackwell et al., 1999a, b; Gantar and Kuzman, 2002; Gelin and Labergere,
2002; Ghouati et al., 2000; Navarrina et al., 2000).

A practical and useful application of interest in this paper is that related to
advanced manufacturing of composites process modeling using the resin
transfer molding (RTM) process. The process involves impregnating the
complex fabric preforms with a polymer resin and the manufactured part is
removed from the mold after completely wetting the preform and curing is
complete. Such composite structural parts are widely used in military,
automotive and civilian applications because of the several inherent
advantages of composites manufactured by such process. For the RTM
process, some effort has gone into optimization and sensitivity analysis but this
work has concentrated mostly on parametric studies for sensitivity analysis
and genetic algorithms for optimization (Chui et al., 1997; Jiang et al., 2001; Kim
et al., 2002). Some preliminary work to develop and implement the CSE for
RTM filling appears in the literature (Henz et al., 2000, 2002; Mathur et al.,
2002). In comparison to existing status of the efforts, in this paper, further
advancements in the applications of sensitivity analysis studies is undertaken
for RTM process based on the CSE representation. In particular, from
a practical viewpoint and to serve as a design tool, the developments help
optimize fill time, gate locations, determination of unknown material
properties, etc.
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In this study, the CSE is formulated for RTM process modeling of
composites. Attention is focused here on isothermal situations which is an
acceptable practice for significantly large molds and helps serve a useful
purpose for preliminary design stages. Essentially, the physical problem is that
of the resin flow through a porous fiber network and the accurate tracking of
the moving fluid flow front. The CSE approach is useful for design as it starts
from the original governing model equations and with the FEM of
discretization, the system of finite element sensitivity equations are
formulated and solved. It happens that this system of sensitivity equations
is always linear; and also, that they can be solved as a post-processing phase so
that the computational requirements and code modifications are minimal. After
the CSE is formulated for the isothermal RTM filling model, the results are
used to analyze and verify a sample problem. The sensitivity analysis results
are applied to a variety of simulations to include the determination of a variable
material property, such as permeability or viscosity and compared with
experimental results, and also for predicting the optimal injection parameters
for a complex structural geometries of composite part.

In the following, we briefly first summarize the pure finite element
formulation of the resin transfer mold filling process for iso-thermal situations
for tracking the fluid flow fronts. Next, we discuss the CSE formulation and the
corresponding numerical implementation for sensitivity analysis. Finally, we
present examples in which the CSE is employed, in particular, for optimizing
the filling time of RTM mold filling process and its related applications.

2. Isothermal RTM
2.1 Governing equations
Under certain circumstances, such as in the case of relatively large molds,
the assumption of isothermal flow is reasonable for use in RTM. In this
paper, the sensitivity formulations are described wherein both the pressure
and fill time sensitivities are investigated. In the isothermal RTM mold
filling, the pressure sensitivity, SP ; ›P=›p; where p is the sensitivity
parameter, with respect to inlet flow rate q, permeability K, and viscosity
m, also, the fill time sensitivity, Stfill

; ›tfill=›p; with respect to inlet
pressure P0, permeability, viscosity, and inlet location x are studied. The
governing model equations for isothermal RTM process modeling are
briefly described next.

Continuity:

›r

›t
þ 7 · ðruÞ ¼ 0 ð1Þ

Employing the Gauss theorem to convert the volume integral to a surface
integral, we have
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Z
V

›r

›t
dVþ

Z
G

rðu · nÞ dG ¼ 0 ð2Þ

From practical considerations and to provide improved physical attributes over
existing approaches, it is possible to track the flow front following an implicit
pure finite element mold filling formulation as described by Mohan et al. (1998,
1999) and Ngo et al. (1998). Here a variable C, namely the fill factor, is
introduced as Z

V

›

›t
ðrCÞ dVþ

Z
G

rCðu · nÞ dG ¼ 0 ð3Þ

Using the product rule on the first term of equation (3), and the fact that for an

incompressible flow,
›r

›t
¼ 0; it yieldsZ

V

r
›C

›t
dVþ

Z
G

rCðu · nÞ dG ¼ 0 ð4Þ

or equivalently, for an incompressible fluid the result is given asZ
V

›C

›t
dVþ

Z
G

Cðu · nÞ dG ¼ 0 ð5Þ

Applying the Gauss theorem to the second term of equation (5), yields the
representation Z

V

›C

›t
dVþ

Z
V

C7 · u dV ¼ 0 ð6Þ

Moving the velocity term to the right hand side yieldsZ
V

›C

›t
dV ¼ 2

Z
V

C7 · u dV ð7Þ

Darcy’s Law is given as

u ¼ 2
K

m
·7P ð8Þ

where K is the permeability tensor of the fiber preform which is defined
appropriately for two and three-dimensional preform considerations. Upon
substituting equation (8) into equation (7), the transient filling model equation
is given as Z

V

›C

›t
dV ¼

Z
V

C7 ·
K

m
·7P

� �
dV ð9Þ
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It should be noted here that the viscosity is not a function of temperature, and
hence the isothermal nature of the model. The boundary conditions for
equation (9) are given as follows

›P

›n
¼ 0 on mold walls

P ¼ 0 at flow front

P ¼ P0 prescribed pressure at inlet or

q ¼ q0 prescribed flow rate at inlet

ð10Þ

where n is the normal to the progressing flow front, and P0 and q0 represent
pressure and flow rate at the inlet(s), respectively. The two initial conditions
ðt ¼ 0Þ required to solve equation (9) are given as

C ¼ 1 at inlet C ¼ 0 elsewhere ð11Þ

At this point it should be noted that the pressure gradient at the unfilled nodes
is negligible. This implies that equation (9) is only solved for the completely
filled nodes (i.e. C ¼ 1). Hence,Z

V

›C

›t
dV ¼

Z
V

ð1Þ7 ·
K

m
·7P

� �
dV ð12Þ

2.2 Finite element procedure
In order to solve the isothermal problem, the FEM is employed asZ

V

WT ›C

›t
dV ¼

Z
V

WT 7 ·
K

m
·7P

� �
dV ð13Þ

Applying the Gauss-Green formula to equation (13) yieldsZ
V

WT ›C

›t
dVþ

Z
V

7WT K

m
·7P dV ¼

Z
G

WT K

m
·7P dG ð14Þ

The weighting functions, W, are chosen as the element shape functions N.
Both the pressure and fill factors are approximated as

PM ¼
Xnn

i¼1

NiPi C ¼
Xnn

i¼1

NiCi ð15Þ

where nn is the number of nodes in the finite element mesh. After introducing
equation (15), equation (14) can be represented as the following finite element
semi-discretized equation system
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C _Cþ KP ¼ q ð16Þ

where

C ¼

Z
V

NTN dV

K ¼

Z
V

BT K

m
B dV

q ¼

Z
G

NT K

m
·7P · n

� �
dG

_C ¼
Cnþ1 2Cn

Dt

ð17Þ

Substituting the definition for Ċ from equation (17) into equation (16) yields

C½Cnþ1 2Cn� þ DtKP ¼ Dtq ð18Þ

and the fill factor and pressure solutions are obtained through an iterative
technique as described in Mohan et al. (1998, 1999) and Ngo et al. (1998), for the
implicit formulations employed here.

2.3 Computational procedure
Since equation (18) is the pertinent discretized model equation in the present
methodology, the fill factors and the pressure for the values associated with the
nodes are solved for in an iterative manner. At the beginning of the simulation
the fill factors are known and are taken to be unity at the injection nodes. Then
at each time step, values for the pressure field and the fill factor are iteratively
computed until a mass conservation is reached. Convergence in the pressure
and fill solutions are ensured during the iteration process by following the
strict criteria

P ¼
0 for c , 1

Pcalculated for c ¼ 1

(
ð19Þ

and by accounting for the overflowing and underflowing of the fill factor c.
Below is a step-by-step procedure of the iterative technique used in the present
implicit pure FE methodology of computation:

(1) At the beginning of each time step, set

{ci}
nþ1
m ¼ {ci}

n
ð20Þ

where subscript m refers to the mth iteration, and superscripts n and
n+1 are the previous and current time step, respectively.
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(2) Form lumped mass matrix C, stiffness matrix K, and load vector q using
equation (17). If the finite element mesh of the discretized domain does
not change throughout the simulation, the mass matrix C should only be
computed once and stored for subsequent usage.

(3) Apply prescribed and fill boundary conditions to stiffness matrix K.
. Prescribed boundary condition: P ¼ P0 or q ¼ q0 at injection ports.
. Fill boundary condition: P ¼ 0 at nodes where c , 1: Note that

by definition, the flow front is assumed to exist in regions where
0 , c , 1:

(4) Form modified load vector g using

{gi}m ¼ Cii{ci}
n
2 Cii{ci}

nþ1
m þ Dt{qi}m ð21Þ

where subscript i refers to the ith node, Cii is the ith component of the
lumped matrix C, and qi is the ith component of the load vector q.

(5) Solve the system of equations

½K̂ij�m{Pj}m ¼ {gi}m ð22Þ

where K̂ij is the aforementioned matrix K after application of prescribed
and fill boundary conditions.

(6) Compute the new nodal resin fraction field {ci}
nþ1
mþ1 using the discrete

mass balance equation,

Cii{ci}
nþ1
mþ1 ¼ Cii{ci}

n
2 Dt½Kij�m{Pj}m þ Dt{qi}m ð23Þ

Note that only a matrix vector product and two vector additions are
performed in this calculation.

(7) Since the fill factor c of a particular node cannot be greater than 1
(e.g. over-filling) or less than 0 (e.g. under-filling), the computed value of
c is corrected by

{ci}
nþ1
mþ1 ¼ max 0;min 1; {ci}

nþ1
mþ1

� �h i
ð24Þ

(8) Check for convergence of resin mass between two consecutive iterations
using

Cii{ci}
nþ1
mþ1 2 Cii{ci}

nþ1
m




 


 # 1 ð25Þ

(9) If convergence is not reached, reset the iteration counter m and the fill
factor solution
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{ci}
nþ1
m ¼ {ci}

nþ1
mþ1 ð26Þ

and perform another iteration by looping back to Step 2. If convergence
is reached, proceed to the next time step.

3. Sensitivity analysis
In this section, the CSE is developed for isothermal RTM filling applications
including sensitivity of parameters such as permeability, viscosity, inlet
pressure, inlet flow rate, and inlet location. A cost function is then developed to
compute the fill time of the mold so that the fill time sensitivity can be
computed. Finally, the sensitivity results are verified with the use of a derived
analytical solution and subsequently some numerical examples are presented.

3.1 CSE
The sensitivity equation for the RTM filling is derived by taking the partial
derivative of Darcy’s Law, given by equation (8), which is subsequently
coupled with the continuity equation, equation (1), with respect to the
sensitivity parameter p, resulting in the quasi-steady state equation for mold
filling. This equation is employed here rather than the implicit pure finite
element formulation shown earlier as it more directly relates to the sensitivity
analysis. Thus,

7 ·
K

m
·7P

� �
¼ 0 ð27Þ

Note that equation (27) is a quasi steady-state representation. This implies that
the time steps are restricted according to stability considerations when solving
the RTM filling problem. The boundary conditions for equation (27) are the
same as those given in equation (10). The next step for solving the sensitivity is
to compute the CSE for isothermal RTM filling. The CSE is obtained by taking
the partial derivative of equation (27) and the associated boundary conditions
given by equation (10) with respect to an arbitrary sensitivity parameter p.
Thus

›

›p
7 ·

K

m
·7P

� �� �
¼ 0 ð28Þ

After using the chain-rule to obtain the derivatives of all terms, equation (28)
becomes

7 ·
›K

›p

1

m
·7P þ K

›

›p

1

m

� �
·7P þ

K

m
·7SP

� �
¼ 0 ð29Þ
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The associated boundary conditions for equation (29) are given as

›

›p

›P

›n

� �
¼ 0 on mold walls

›P

›p
¼ 0 at flow front

›P

›p
¼

›P0

›p
for constant pressure at inlet

›q

›p
¼

›q0

›p
for constant flow rate at inlet

ð30Þ

The boundary conditions for equation (29) can be rewritten, from equation (30),
using the definition of pressure sensitivity SP ; ›P=›p; as

›SP

›n
¼ 0 on mold walls

SP ¼ 0 at flow front

SP ¼
›P0

›p
for constant pressure at inlet

Sq ¼
›q0

›p
for constant flow rate at inlet

ð31Þ

where the flow rate sensitivity is defined as Sq ; ›q=›p: If the sensitivity
parameter is the inlet location then the boundary conditions are represented as

›SP

›n
¼ 0 on mold walls

SP ¼ 0 at flow front

SP ¼ 2
›P

›x
at inlet

ð32Þ

The inlet boundary condition from equation (32), is found by using the chain
rule in the following manner
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›Pðxð pÞ; pÞ

›p
¼

›P

›p
þ

›P

›x

›x

›p
¼

›P0

›p
ð33Þ

Since ›P0=›p ¼ 0 and ›x=›p ¼ 1; equation (32) is obtained.

3.2 Finite element formulation
Employing the method of weighted residuals to derive the finite element
equations, equation (29) leads to

Z
V

WT7 ·
›K

›p

1

m
·7P þ K

›

›p

1

m

� �
·7P þ

K

m
·7SP

� �
dV ¼ 0 ð34Þ

Applying the Gauss-Green formula to equation (34), yields

Z
V

7WT ›K

›p

1

m
·7P dVþ

Z
V

7WTK
›

›p

1

m

� �
·7P dVþ

Z
V

7WT K

m
·7SP dV

¼

Z
G

1

m
WT ›K

›p
·7P · n dGþ

Z
G

WTK
›

›p

1

m

� �
·7P · n dG

þ

Z
G

WT K

m
·7SP · n dG ¼ 0

ð35Þ

The weighting functions W are chosen to be the same as the element shape
functions N. Interpolating SP yields

SP ¼
Xnn

i¼1

NiSPi

P ¼
Xnn

i¼1

NiPi

W ¼ N

ð36Þ

The sensitivity finite element equation is given in the following semi-
discretized equation representation
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›K

›p
P þ KSP ¼ Sq ð37Þ

where ›K=›p;K; and Sq are defined as

›K

›p
¼

Z
V

BT ›K

›p

1

m
B dVþ

Z
V

BTK 2
1

m2

� �
›m

›p
B dV K ¼

Z
V

BT K

m
B dV

Sq ¼

Z
G

NT ›K

›p

1

m
·7P · n dGþ

Z
G

NTK
›

›p

1

m

� �
·7P · n dG

þ

Z
G

NT K

m
·7SP · n dG

ð38Þ

It is now possible to implement the RTM sensitivity equation. Note that in
equation (37) the left-hand pressure term P is already known when the pressure
sensitivity for the current time step is to be computed. This allows for the
pressure sensitivity and pressure results to be computed in parallel, where
pressure sensitivity is always one time step behind the pressure computations.

3.3 Computational procedure
The sensitivity equations can be solved with minimal changes to existing RTM
software. The current simulations were executed employing the general
purpose code on composite technology of polymeric useful structures
(OCTOPUS). Only a few extra function calls need to be added to the existing
code to compute the sensitivity results. The sensitivity equation to be solved is
stated in equation (37) in conjunction with the boundary conditions given in
equation (31). The solution procedure is outlined here, with the mold filling
implicit pure finite element algorithm previously described in Mohan et al.
(1998, 1999) and Ngo et al. (1998).

(1) Form the mass matrix, C, stiffness matrix, K, and the load vector, q, as
defined in equation (17).

(2) Next, form the sensitivity stiffness matrix, ›K=›p, and the sensitivity
load vector, Sq, as defined in equation (38). The parameters necessary for
this are computed by taking the partial derivative of permeability, K, and
viscosity, m, with respect to the sensitivity parameter, p.

(3) Apply the natural boundary conditions. These are considered by stating
that once a control volume is filled, the mass balance must be held, so
q ¼ {0} for all nodes.

(4) Apply the prescribed boundary conditions to the stiffness matrix,
K, given in equation (10).
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(5) Solve for the pressure distribution by solving the finite element equation,
equation (18).

(6) Compute and apply the prescribed sensitivity inlet conditions from
equation (31). This includes prescribed SP or Sq at the mold inlets.

(7) Compute the pressure sensitivity distribution, SP, from equation (37).

(8) Save the results and continue on to the next time step, until the filling is
completed.

4. Optimization
Cost functions are functions that describe a result derived from the
computational procedure. Examples of these results could be the amount of
porosity, shape of the flow front, or the fill time. The last of these, namely, the
fill time, is chosen as an illustrative example for the isothermal RTM model
simulations. The fill time is an important consideration in the RTM
manufacturing process because it affects how much cure will occur before the
mold is completely filled, which in turn affects the final structural properties
of the part. The fill time also affects the rate at which parts are manufactured.
The objective here is to derive a cost function for the RTM filling process and
utilize the CSE results to analyze this cost function, namely, the fill time. This
information can then be used later to optimize the computational model with
respect to the sensitivity parameter, or to compute an unknown material
property.

4.1 Cost function derivation
The fill time sensitivity is derived by first defining a function that includes the
fill time and by taking the partial derivative with respect to the sensitivity
parameter p and solving for ›tfill=›p; the fill time sensitivity. The information
required to solve for the fill time sensitivity is then computed and finally the fill
time sensitivity cost function is augmented to the computational procedure.
For RTM, the pressure sensitivity, SP, is first solved for in equation (37) using
the FEM. In order to solve equation (37) the necessary boundary conditions
must be applied. This includes the inlet conditions which may be constant
pressure or constant flow rate and the natural boundary conditions which state
that resin mass can neither be created nor destroyed inside the manufactured
part. The pressure sensitivity value is then used to compute the flow rate
sensitivity at the mold inlet(s), with equation (37), after which the fill time
sensitivity is computed. The function used to evaluate mold fill time is given in
equation (39) (Henz et al., 2000) and is different to that described in Mathur et al.
(2002) which does not consider the present integration limits arising from the
use of the quasi-steady state governing model equation. The volume of the
mold filled during each time step is computed as
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VDt ¼

Z Dtf

0

qinlet dt ð39Þ

where qinlet is the flow rate at the mold inlet, VDt is the volume of mold filled
during the current time step, and Dtf is the length of the current time step.
The volume of the mold filled is evaluated at each time step. As equation (27) is
a quasi steady-state function it is only valid for a given time step. To compute
the fill time sensitivity the partial derivative of equation (39) must be taken
with respect to the sensitivity parameter p. Thus

›VDt

›p
¼

›

›p

Z Dtf

0

qinlet dt ð40Þ

which yields

0 ¼

Z Dtf

0

Sqinlet
dt þ

›Dtf

›p
qinletðDtf Þ ð41Þ

Solving for ›Dtf=›p the fill time sensitivity for the current time step is defined
as

›Dtf

›p
¼

R Dtf

0 Sqinlet
dt

qinletðDtf Þ
ð42Þ

which when summed over all the time steps, the fill time sensitivity, namely,
the cost function is computed as

Stf
¼

AllTimeSteps

X R Dtf

0 Sqinlet
dt

qinletðDtf Þ
ð43Þ

These results can be used for optimization, which for the current analysis is
minimization of the fill time. The method used to minimize the fill time can
include conjugate gradient search methods, genetic algorithms, and the like.
With these methods the optimum value is computed for a given sensitivity
parameter. In the present study the fill time optimization is not presented but
the fill time sensitivity results are instead used to compute material properties
and optimal boundary conditions.

4.2 Computational procedure
This discussion is focused on fill time optimization. It should be noted that
other optimizations can be used for the RTM process including flow rate
analysis, last points to fill, shape of the flow front, etc. Highlighted next is the
computational procedure that is employed for optimization of the RTM process.
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(1) Compute the sensitivity results for the process outcome of interest with
respect to the sensitivity parameter(s), i.e. fill time sensitivity with
respect to resin viscosity. This result is in fact the gradient of fill time
with respect to the sensitivity parameters.

(2) Optimize the process outcome by use of the steepest descent for
minimization, as described in Shewchuk (1994), or Newton iterations for
desired results as in equation (52).

(3) Iterate using the optimization method of choice. Following this
procedure is a discussion of the “golden section” (Press et al., 2002)
and steepest descent methods used for optimization of functions where
the gradient is known, i.e. the sensitivity results.

(4) The output of the previous step is a guess of the processing parameter
values required to optimize the RTM process. These parameter values
are compared with the most recently utilized parameters and if they are
the “same” or “sufficiently close” then the optimal parameters are
known. When the processing parameter is geometric then the
optimization procedure stops when the parameter values are the same.
This is because the geometry has been discretized for the finite element
analysis. If the processing parameter is a continuous function then a
good stopping criterion is when the difference in value is no longer
measurable by available methods.

The use of the combined steepest descent and golden section methods is
discussed here for minimization of fill time with respect to inlet location, or any
other case where multiple sensitivity parameters are used for the analysis. The
geometry is assumed flat so that only the x and y directions are considered.

(1) Begin by selecting a node on the surface where the inlet gate could
eventually be located.

(2) At the inlet node compute ›tf=›x and ›tf=›y: The quantity ›tf=›x is
defined as the fill time sensitivity with respect to gate location in the x
direction, and the term ›tf=›y is defined as the fill time sensitivity with
respect to gate location in the y direction.

(3) The search direction, from the steepest descent method, is now defined
as

2
›tf

›x

2
›tf

›y

8>>><
>>>:

9>>>=
>>>;
:

This is the gradient of the fill time with respect to the sensitivity
parameter x.
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(4) Find a node along an edge intersected by the search direction. This point
is used to make sure that the line segment searched does in fact have
possible injection points at both ends.

(5) With the initial node location denoted as (x1, y1) and the point along the
intersected edge denoted as (x2, y2), set

S ¼
x2 2 x1

y2 2 y1

( )
;

where S defines the line segment used in the “golden section” method.

(6) Any point on S can be described by the function x þ l · S where x is the
initial position and l is between 0 and 1.0. In the “golden section” method
two points inside this range are then chosen for analysis; ll ¼
lmax 2F · ðlmax 2 lminÞ and lr ¼ lmin þF · ðlmax 2 lminÞ: These
points are at a distance of F · ðlmax 2 lminÞ from each endpoint where
F ¼ 1

2

ffiffiffi
5

p
2 1:0

� �
: When the results of the cost function are compared,

the interval is then reduced by moving the minimum, lmin, to the right,
lmin ¼ ll; if the right value is less than the left value. If the left value is
less than the right value, then it is obtained by moving the maximum
lmax to the left, lmax ¼ lr: This is continued until the minimum and
maximum values are close enough, lmax 2 lmin , h; inside a specified
tolerance at which time the “golden section” method is converged.

(7) Once the “golden section” method has been exhausted repeat the
sensitivity analysis, until the “golden section” method converges to the
original point, i.e. l ¼ 0:0: The optimized node is, therefore, the most
recently analyzed point.

This procedure could be used for any sensitivity parameter but is most useful
when multiple sensitivity parameters are analyzed together.

5. Numerical verification and examples
In this section the numerical developments are verified with analytical results
and example of sensitivity results are given for a sample geometry.

5.1 Verification of isothermal RTM sensitivity equations
A circular disk with a hole (Figure 1(a)), being filled from the center with
constant pressure is considered. The analytical fill time solution is given as
(Mohan et al., 1999):

t ¼
m

k

F

P0

R 2

2
ln

R

R0

� �
2

R 2

4
þ

R2
0

4

" #
ð44Þ
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where m is the viscosity, F is the porosity, k is the permeability, P0 is the inlet
pressure, R0 is the inner radius, R is the outer radius, and t is the time to fill
from R0 to R. The other possible inlet condition with an analytical solution is
for the case of constant flow rate. This analytical solution for the flow front is
given as (Mohan et al., 1999):

RðtÞ ¼
Qt

pFH
þ R2

0

� �1
2

ð45Þ

where H is the mold thickness and Q is the inlet flow rate. The inlet pressure for
the constant flow rate boundary condition can also be computed analytically,
as

P0 ¼
mQ

2pkH
ln

RðtÞ

R0

� �
ð46Þ

where R(t) is the radius filled to at a specific time. The analytical solution is
employed to verify the isothermal filling solution. In addition, from these
analytical solutions, sensitivity solution are also computed to validate the
subsequent CSE developments for isothermal filling. The partial derivative of
the fill time solution for constant inlet pressure, equation (44), with respect to
the sensitivity parameter p, yields

Figure 1.
Circular disk with hole
(152.4 mm disk with a
12.7 mm hole) problem
description for
analytical/numerical
comparison
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The analytical sensitivity solution for a constant flow rate injection can also be
derived from an analytical filling solution. Taking the partial derivative of
equation (45) with respect to the sensitivity parameter p, yields

›t

›p
¼ 2

1

Q2

›Q

›p
½ðRðtÞ2 2 R2

0ÞpFH � ð48Þ

For completeness the pressure sensitivity solution at the inlet is included for
constant flow rate boundary conditions. The partial derivative of equation (46)
with respect to the sensitivity parameter p, yields

›P0

›p
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The verification of the isothermal sensitivity equations is performed by
comparing the results from the analytical solution, equation (47), with the
results obtained from the finite element RTM developments. The finite element
mesh is shown in Figure 1(b). The material properties and boundary conditions
employed for the simulations are listed in Table I. The results are presented in
Figure 2(a) and (b). The comparative numerical and analytical results for inlet
pressure and permeability sensitivities are shown in Figure 2(a) and (b),
respectively. The agreement of the results is excellent and clearly verifies the
present developments for sensitivity parameters of inlet pressure and
permeability.

5.2 Fill time sensitivity problem description
Illustrative fill time sensitivity results are presented next for the 50:8 mm £
50:8 mm plate shown in Figure 3(a) and (b). The inlet location used for this
model is the bottom left corner of the plate. The default model values for the
results presented in Figures 4(a) and (b), 5(a) and (b), 6(a) and (b), are described
in Table II.

R0¼ 12.7 mm R ¼ 152.4 mm m ¼ 5.00 cP

k ¼ 2.300 £ 10212 m2 F¼ 0.3 vof ¼ 1.0 2 F ¼ 0.7

P0¼ 689.5 kPa

Table I.
Material properties

and boundary
conditions for the

disk problem
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Figure 2.
Comparison of analytical
and numerical results
for filling of the disk
model
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Inlet pressure, pressure sensitivity, fill time, and fill time sensitivity were
computed. These results are shown as an illustration of the type of results one
can obtain from utilizing the CSE. Note that the sensitivity values here are
scaled using the method described in Blackwell et al. (1999a). In this method the
sensitivity results are multiplied by the nominal parameter value as

Ŝp̂ ¼ p0 * Sp ð50Þ

where p0 is the nominal parameter value. The sensitivity units in equation (50)
are therefore the same as the model results, i.e. fill time and fill time sensitivity
both have the same units. In Figure 4(a) the pressure and pressure sensitivity
results are plotted for varying permeability values. The inlet pressure
decreases with increasing permeability as would be expected from analysis of
the analytical solution, (equation (46)). The absolute value of the pressure
sensitivity decreases with increasing permeability, illustrating the fact that the
inlet pressure is less sensitive to increase in permeability as the nominal value
increases. Figure 4(b) plots the fill time and the fill time sensitivity versus
permeability results. In Figure 4(b) the fill time decreases with increasing
permeability as is expected from equation (47). Figure 5(a) and (b) shows the
pressure and fill time sensitivity with respect to the resin viscosity. From the
analytical solution, equation (44), it is evident that the fill time is directly
proportional to the viscosity. The plots show this point. Since inlet pressure
and fill time are directly proportional to the resin viscosity, the slope of the lines
in Figure 5(a) and (b) are approximately constant and the sensitivity results
have a slope of zero. Figure 6(a) shows inlet pressure and inlet pressure
sensitivity versus inlet flow rate. The plots show the fact that inlet pressure is a
linear function of inlet flow rate for this range of flow rates. Figure 6(b) shows
the fill time and the fill time sensitivity results versus inlet pressure for

Figure 3.
Problem description of

50.8 mm £ 50.8 mm plate
filling problem
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Figure 4.
Sensitivity results vs
permeability for the
50.8 mm £ 50.8 mm flat
plate
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Figure 5.
Sensitivity results vs

viscosity for the
50.8 mm £ 50.8 mm flat

plate
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Figure 6.
Sensitivity results vs
inlet conditions for the
50.8 mm £ 50.8 mm flat
plate
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the 50:8 mm £ 50:8 mm plate. The trends of decreasing fill time and decreasing
fill time sensitivity follow closely the analytical solutions given in equations
(44) and (47), respectively. By combining all of the sensitivity results as a single
plot, (Figure 7), and scaling the x-axis by the nominal value, it is possible to
make some comments about each of the parameters with respect to each other.
For instance, note that in Figure 7(a), at the nominal values chosen, the absolute
values of all the pressure sensitivity results are similar, but as the values
increase, permeability is less important to the maximum pressure in the mold.
It is shown in Figure 7(b) that mold fill time is sensitive to a similar degree for
all parameters but as the values increase fill time is less sensitive to inlet
pressure and preform permeability than viscosity which remains constant.

5.3 Applications of the CSE
In this section, three applications of the CSE are demonstrated. These
applications of the RTM CSE are unique in the literature for RTM. Another
common application, minimization of fill time according to injection locations is
also available (Mathur et al., 2002).

5.3.1 Computation of unknown material property. In this sample illustrative
problem the viscosity of flowing resin is assumed to be not accurately known
for a particular structural part being manufactured. The numerical results are
computed with the finite element discretized model and compared to the fill time
measurements from the laboratory. The material properties and inlet conditions
for the initial finite element model are selected as described in Table III.

The geometry and finite element model are shown in Figure 8(a) and (b),
respectively. The model pertains to that termed as a risk reduction box
geometry which has similarities to that of a typical keel beam for the Comanche
helicopter.

The sensitivity results are used here to calculate the value of viscosity that
was used in a laboratory experiment. During the experiment, mold filling
occurred in approximately 60 s. Earlier a numerical analysis was performed
using the FEM that predicted a fill time of approximately 100 s. By combining
the sensitivity results with the Newton iteration method the unknown viscosity
value is computed. The function to be solved is defined as

f ðmÞ ¼ tf actual
2 tf simulated

ðmÞ ð51Þ

In equation (51), tfactual
is the actual fill time measured in the laboratory, and

tfsimulated
(m) is the currently computed fill time from the finite element model.

k ¼ 2.300 £ 10211 m2 m¼ 140.0 cP

P0¼ 34.5 kPa q0¼ 5.735 £ 1023 ml/s

Table II.
Material properties

and boundary
conditions for the

50.8 mm £
50.8 mm plate

problem
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Figure 7.
Pressure and fill time
sensitivity vs normalized
parameter value plots for
isothermal RTM filling of
the 50.8 mm £ 50.8 mm
plate
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By finding the root of this equation the viscosity from the experiment can be
determined. To calculate the root of equation (51), the Newton method is used
employing

mnþ1 ¼ mn þ
2f ðmnÞ

f 0ðmnÞ
ð52Þ

where n denotes results from the previous viscosity estimation and n+1
denotes values for the current viscosity estimation. By iterating until
convergence is reached the correct viscosity values are computed as shown
graphically in Figure 9. Such techniques are of practical importance to
designers and can also be applied to other analysis including fill time
optimization, inlet parameter computations, etc.

5.3.2 Computation of multiple simultaneous unknown material properties.
This example is similar to the previous example in that sensitivity results are
used to compute unknown material properties. In this section experimental
data are presented and compared to the simulation results. Sensitivity analysis
can be employed to quantify and account for the variations in material
properties that may exist during an actual experiment. This can be done using
the measured data during the actual experiment as demonstrated here. The
experimental front progression shows that the permeability tensor is not

k ¼ 2.300 £ 10212 m2 m¼ 5.00 cP Pinlet¼ 689.5 kPa
Table III.

Problem description

Figure 8.
Geometry and finite

element mesh used for
computation of unknown

material property
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symmetric as initially assumed and therefore two material properties, namely,
kxx and kyy are undetermined and need to be computed simultaneously. The
experimental setup is mold filling of a 356 mm £ 356 mm flat plate with a
center injection gate. The simulations are based on experimentally measured
viscosity and flow rate values. The initial permeability data employed in the
simulations are based on a radial permeability setup as described in Table IV.

Pressure sensors were embedded into the fiber preform in order to measure
the transient pressure history during filling. The locations of the pressure
sensors are shown in Figure 10(a).

In the experiment the viscosity of the resin was measured prior to injection,
so it is assumed that this value is accurate. The inlet flow rate is also measured
during filling and precisely controlled. For isothermal filling this only leaves
the permeability tensor as an unknown. The permeability of the actual preform
inside a mold is difficult to know to an exact degree of certainty prior to
injection. Permeability data based on separate radial flow experiments can be
utilized but small changes in the way in which the fiber preform is set into the
mold can affect the actual permeability tensor in the experimental setup.

kxx¼ 4.70177899 £ 1029 m2 kxy¼ 0.0 m2 kyy¼ 4.70177899 £ 1029 m2

m¼ 22.8 cP qinlet¼ 9.552 £ 1026 m3/s Thickness¼ 3.175 mm

Table IV.
Material properties
and boundary
conditions for the
356 mm £ 356 mm
plate problem

Figure 9.
Fill time vs viscosity
with Newton iterations
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Figure 10.
Comparison of

experimental and
simulated pressure data

for 356 mm £ 356 mm
plate
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The pressure during infusion is affected by the permeability tensor values and
is a more rigorous parameter than flow front location. This example
demonstrates application of sensitivity analysis discussed earlier to improve
the accuracy and resolution of the permeability tensor using the experimentally
measured parameters.

Based on the earlier discussions the permeability tensor is the only unknown
in this example. Also, assuming that the major axes of the permeability tensor
are the x and y directions, the off diagonal term, namely, kxy is assumed to be
zero, leaving only two unknowns. Since there are two unknowns there must be
two independent equations available. The two equations used to compute the
permeability tensor and improve the accuracy of the simulation are the
following:

Pexp ¼ Psim þ DkxxSPkxx
þ DkyySPkyy

at point 1

Pexp ¼ Psim þ DkxxSPkxx
þ DkyySPkyy

at point 2
ð53Þ

where Pexp and Psim are the experimental and simulated pressure values at the
pressure sensors, respectively. SPkxx

and SPkyy
are the pressure sensitivity values

with respect to the kxx and kyy permeability tensor terms, respectively. After
solving for Dkxx and Dkyy in equation (53) the new permeability tensor is input
to the simulation and new pressure results are computed. With the filling being
a transient problem and an experimental transient pressure history available,
equation (53) is solved at various stages of filling and the average changes in
kxx and kyy values are determined. In this example equation (53) is solved at five
different transient times during filling. This process continues until
convergence. The final computed permeability tensor values for this model
are given as

kxx ¼ 5:00814899 £ 1029; kxy ¼ 0:0; kyy ¼ 7:58130899 £ 1029 m2

These values are input to the simulation and the transient pressure history at
the pressure sensor locations is computed. The results for the simulations with
initial permeability values and sensitivity modified values are compared in
Figure 10. Figure 10 shows that there is significant deviation in the simulated
pressure histories compared with the experimental data. After iterating using
equation (53) until convergence, the pressure data with the new sensitivity
modified permeability tensor shows a much better agreement with the
experimental results. Equation (53) is solved for five predetermined times (6, 12,
18, 24, and 28.8 s) during each simulation. The average computed permeability
is then used for the next iteration. The pressure at the injector location was
measured in the experiment and also computed in the finite element model.
Figure 11 shows the comparison of injection pressures. The injection pressure
histories with the sensitivity modified permeability tensor shows significant
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Figure 11.
Comparison of

experimental and
simulated pressure data

for 356 mm £ 356 mm
plate including pressure
at the injection location
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improvement over the initial permeability tensor. An equation similar to
equation (53) with the injector pressure is not included when computing the
permeability tensor because the pressure measured in the experiment can be
inaccurate at the injector location. Also, the pressure results computed in the
finite element model are highly sensitive to the mesh size around the injector
which leads to inaccuracy. The plots in Figure 11 are included to show that the
trend observed in the injector is indeed consistent between the experimental
data and the simulation data, in both cases with improved accuracy in the
comparisons.

5.3.3 Optimization of a boundary condition. Obtaining the minimum possible
fill time for a particular mold is important in keeping manufacturing costs
down. A constant flow rate injection allows for control over mold filling at the
expense of minimum fill time. If the mold pressure can not exceed some
predetermined value it would be useful to be able to predict what the maximum
flow rate would be to stay under this threshold value. Sensitivity analysis
combined with the Newton iteration method can be used to predict this
maximum flow rate and thus optimize the mold filling process. In equations
(51) and (52) m is replaced by inlet flow rate q0. In this example, the complex
part in Figure 12 is used. Note that in Figure 13 only three iterations after the
initial guess are required to compute an inlet flow rate that should result in a
pressure below the threshold value. The minimum fill time required for this
mold with predetermined inlets and vents can be simulated by applying a
constant pressure boundary condition at the inlets. A constant pressure
injection may not be the most desirable although the control over the resin flow
is important for manufacturing quality parts.

6. Concluding remarks
A wide variety of parametric investigations to include material property,
boundary conditions, and geometric sensitivity parameters and analysis

Figure 12.
Geometry and finite
element mesh used in
optimization study
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studies were presented for isothermal RTM considerations. The CSE was
developed for the isothermal RTM process simulation studies by starting from
the governing model equations and applying the FEM. Once the CSE was
formulated, a cost function, namely the fill time, was derived along with the fill
time sensitivity. Using analytical results for filling of a disk the numerical
developments were verified for sensitivity analysis. A simple 50.8 mm square
plate and the corresponding sensitivity results were presented. A sample
application for the sensitivity results was given in the computation of an
unknown material property of a structural part manufactured by RTM process.
In the analysis the viscosity was computed for the geometry of a risk reduction
box after example laboratory results did not coincide with the results from the
numerical simulations. Optimization of a boundary condition value was also
presented as an application of the CSE. The usefulness of the present efforts as
a design tool was subsequently demonstrated.
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